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ARTICLE INFO SUMMARY
ArtiC{e history: Background & aims: High glycaemic variability (GV) is associated with late complications in type 2
Received 17 February 2020 diabetes (T2D). We hypothesised that a carbohydrate-reduced high-protein (CRHP) diet would reduce GV

Accepted 3 July 2020 acutely in patients with T2D compared with a conventional diabetes (CD) diet.

Methods: In this controlled, randomised crossover study, 16 patients with metformin-treated T2D
Keywords_-' (median (IQR) age: 64.0 (58.8—68.0) years; HbAi.: 47 (43—57) mmol/mol; duration of T2D: 5.5 (2.8
Iype 2 ctl)lage(tjes g —10.3) years) were assigned to an energy-matched CRHP diet and CD diet (31E%/54E% carbohydrate, 29E
G(l);\é_aceal;ig vle,u'ir:ls"flit;ﬁ %[16E% protein and 40E%/30E% fat, respectively) for two separate 48-h intervention periods. Interstitial
Continuous glucose monitoring comeu.ous glucose momtqrmg (CGM) was performed to assess accepted measures o.f g}ycagmlc vari-
ability, i.e. standard deviation (SD) around the sensor glucose level; coefficient of variation in percent
(CV); mean amplitude of glucose excursions (MAGE); continuous overlapping net glycaemic action
(CONGA{, CONGA4) of observations 1 and 4 h apart; and mean absolute glucose (MAG) change.
Results: All indices of glycaemic variability (mean + SD) were significantly reduced during CRHP diet
compared with CD diet; including SD (1.0 + 0.3 (CRHP) vs 1.6 + 0.5 mmol/L (CD)), CV (12.3 + 3.8 vs
19.3 + 5.5%), MAGE (2.3 + 0.9 vs 4.2 + 1.3 mmol/L), CONGA; (0.8 + 0.3 vs 1.5 + 0.4 mmol/L), CONGA4
(1.4 + 0.5 vs 2.5 + 0.8 mmol/L), and MAG change (0.9 + 0.3 vs 1.4 + 0.4 mmol/L/h) (p < 0.001 for all).
Compared with the CD diet, the CRHP diet improved the diurnal glucose profile by reducing 24-h mean
sensor glucose (7.7 + 1.6 vs 8.6 + 2.0 mmol/L).
Conclusions: In T2D patients treated with diet and metformin, two days of iso-energetic replacement of
dietary carbohydrates by protein and fat reduced all indices of glycaemic variability by 36%—45% when
compared with a conventional diabetes diet. These data may support reduction of carbohydrates as
dietary advice for T2D patients.
Clinicaltrials.gov identifier: NCT02472951.
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1. Introduction

The UK Prospective Diabetes Study (UKPDS) documented the
importance of chronic sustained hyperglycaemia for development
of late diabetic complications and mortality in type 2 diabetes
(T2D) patients [1]. Since, levels of glycosylated haemoglobin
(HbA1() are considered the best indicator of glycaemic control and
reductions in HbA;. are regarded a key factor in reducing risk of
diabetes-related complications [2]. Excessive rise of postprandial
glucose (PPG) is a frequent manifestation of dysglycaemia in T2D
[3] and a major contributor to overall hyperglycaemia in T2D pa-
tients [4]. In addition, PPG fluctuations have been demonstrated to
be independently correlated with T2D-associated morbidity and
mortality [5,6]. A growing body of evidence suggests that the size,
frequency and duration of these fluctuations, i.e. the glycaemic
variability (GV), irrespective of the magnitude of hyperglycaemia,
may confer additional risks for the development of micro-and
macrovascular diabetic complications [7], although well-designed
randomised studies illustrating the association are missing [8,9].

Nutrition therapy plays an integral role in overall diabetes
management, but studies examining the ideal diet for T2D patients
are inconclusive and evidence-based guidelines are warranted [10].
Nevertheless, growing evidence supports that diets reduced in
carbohydrates enhance glycaemic control [11,12], in agreement
with the finding that the dietary carbohydrate content is one of the
greatest contributors to postprandial hyperglycaemia [13], and
proteins have been shown to be a viable substitute for carbohydrate
in improving glycaemic control [14]. However, in the published
studies, assessment of glycaemic control has been limited to mea-
surements of HbA1. and fasting glucose [11], which do not capture
the diurnal glucose variations. With the availability of continuous
glucose monitoring (CGM) systems, information about this can now
be obtained, and emerging evidence supports its use in improving
[15] and complementing HbA;. measurements as a marker of gly-
caemic control [16,17]. CGM measurements are usually analysed
electronically to provide various indices of GV. Currently, in the
absence of a GV ’‘gold standard’, an appropriate alternative
approach is to consider a range of GV indices that provide measures
of different aspects of intra- and inter-day glucose fluctuations [18].
Studies systematically evaluating the effects of carbohydrate
reduction on such indices are, so far, scarce.

The aim of this study was to investigate, in subjects with T2D,
whether two days of dietary carbohydrate reduction with iso-
energetic substitution with protein and fat would improve the
diurnal glucose profile, evaluated both with standard measures of
glycaemia and with the most often used indices of GV, compared to
a conventionally recommended diet.

2. Materials and methods
2.1. Study population

The study included 16 non-smoking patients diagnosed with
T2D and treated with metformin (Table 1). Weight was maintained
throughout the study. No patients dropped out. Patients were
recruited from August 2015 to June 2016 via the medical records at
Bispebjerg University Hospital, Copenhagen, Denmark. Fifty-one
patients were contacted, 18 were screened (Supplementary Fig. 1)
and 16 met the inclusion criteria: men and post-menopausal
women with T2D and below the age of 70 years. Patients with
liver or kidney disease or critical illness were excluded; the eligi-
bility criteria has been described in more details elsewhere [19].
Diagnosis of T2D was based on the criteria of the American Diabetes
Association [20] and absence of plasma glutamate decarboxylase

Table 1
Baseline characteristics.

Characteristics

Male sex (n) (%) 14 (88)

Age (years) 64.0 (58.8—68.0)
Weight (kg) 94.0 +17.3
Height (cm) 1762 +7.0
Body mass index (kg/m?) 30.1 +44

Daily total energy expenditure (KJ) 10298 + 1356
Glycosylated haemoglobin (mmol/mol) 47 (43-57)
Duration of type 2 diabetes (years) 5.5(2.8—10.3)

Data are expressed as mean + SD or median (25—75 percentile) unless otherwise
specified.

(GAD-65) antibodies. Patients provided written, informed consent
to the study protocol which was approved by both the Health Ethics
Committee of Copenhagen and the Danish Data Protection Agency.
The study was registered at clinicaltrials.gov (ID: NCT02472951).

2.2. Design and intervention

In this controlled, open-label, randomised crossover study, pa-
tients underwent two 48-h intervention periods separated by a
2—8 week washout period. Patients were randomised by drawing
of blinded ballots to start with either a carbohydrate-reduced high-
protein (CRHP) diet or a conventional diabetes (CD) diet (according
to Nordic Nutrition Recommendations [21]). Following an over-
night fast, the assigned breakfast and lunch meals were ingested at
the Endocrine Research Unit of the hospital. Dinner and pre- and
post-dinner snacks were provided for home consumption. This was
repeated the following day. Prior to each 48-h intervention, a
control dinner was provided to be consumed at home the evening
before. During the intervention period, patients were sedentary in a
reclined position at the research unit and were furthermore asked
to abstain from physical exercise when at home. Alcohol and
strenuous physical activity were prohibited for three days prior to
experimental days. No tea, coffee or calorie-containing beverages
or foods other than provisioned were allowed during the experi-
mental days. Macronutrient compositions of the CRHP/CD diet for
every meal were 31E%/54E% carbohydrate, 29E%/16E% protein and
40E%/30E% total fat; a detailed description has been given else-
where [19] (Supplementary Table 1). The diets were comparable
with respect to added sugar, glycaemic index and fatty acid
composition. The intervention diets were iso-energetic and corre-
sponded to each patient's estimated daily total energy expenditure
(TEE), calculated by multiplying resting energy expenditure (RES)
with a physical activity level of 1.4. RES was derived from measures
of fat-free mass and fat mass, obtained from Dual-Energy X-ray
Absorptiometry (DXA) (Lunar iDXA, GE Healthcare, Madison, WI,
USA) [19]. Thirty percent of TEE was ingested at each main meal
(breakfast, lunch and dinner) and the remaining 10% as pre- and
post-dinner snacks. All meals were weighed out and prepared by
trained kitchen staff instructed in the protocol at Bispebjerg Uni-
versity Hospital kitchen.

2.3. CGM procedure

Diurnal glucose profiles were obtained using the iPro2 CGM
system and the Enlite glucose sensor (Medtronic MiniMed, Inc.,
Northridge, CA), which provided abdominal subcutaneous inter-
stitial glucose level readings at 5-min intervals over 48 h, corre-
sponding to a total of 576 measurements. Previous work has shown
this to be a reliable [22] and accurate method, when matched
against YSI-2300 (Yellow Springs Instruments, Inc., Yellow Springs,
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Ohio, USA) [23]. The CGM sensor was mounted at least 16 h prior to
each 48-h intervention period. Capillary blood glucose was
measured with the Contour Next Link (Medtronic MiniMed, Inc.,
Northridge, CA), previously validated, hand-held glucose meter
[24], at least 5 times per day for calibration of the CGM measure-
ments. Stored CGM data were exported to online software (Care-
Link iPro; Medtronic), together with the capillary measurements, to
convert measured signals into glucose values, as per the manu-
facturer's instruction. Accuracy of glucose values was evaluated
according to number of valid calibrations and the mean absolute
difference percentage (MAD%). All glucose profiles were included in
the analysis.

2.4. Outcomes

CGM measurements were analysed for each 48-h intervention
period (Fig. 1). Glycaemic control was assessed as following: mean
sensor glucose (MSG) level; postprandial glucose (PPG), mean of
glucose readings over 4 h post-breakfast and -lunch; postprandial
glucose excursions (PPGE), i.e. magnitude of the postprandial peak
post-breakfast and -lunch; maximum and minimum sensor
glucose; area under the curve (AUC) above a level of 7.8 and
10 mmol/L. AUC was calculated using the trapezoidal rule. The
percentage of time spent in range (3.9—10 mmol/L) or hyper-
glycaemia (>10 mmol/L), as defined by the American Diabetes As-
sociation glycaemic control targets [25], were assessed, as well as
the time spent above a level of 7.8 mmol/L (as research shows this
glucose level seldomly to be exceeded by healthy people with
normal glucose tolerance [26]). The intra-day GV indices included
standard deviation (SD) around the sensor glucose level; coefficient
of variation in percent (CV) (SD/MSG x 100); mean amplitude of
glucose excursions (MAGE); continuous overlapping net glycaemic
action (CONGA,) of observations n hours apart; mean absolute
glucose (MAG) change. MAGE, as introduced by Service et al. [27], is
the arithmetic mean of glucose excursions (either upward or
downward, decided by the direction of first excursion) exceeding
1.0 SD of the mean glucose for a given day. In the present study,
MAGE was computed using an automated algorithm of the original
method [28,29], which has been found to correlate strongly with
the original method (r = 0.95, p < 0.001) and to result in similar
results between the two methods of calculation at all MAGE values
[29]. CONGAy, is calculated as the SD of differences between glucose
values at each 5 min time point and the one n hours previously [30].

M.N. Thomsen et al. / Clinical Nutrition ESPEN 39 (2020) 46—52

MAG change is the absolute increments and decrements of glucose
from peaks to nadirs per hour, and has, as a GV index, been found
applicable to CGM data [31]. The inter-day variability was assessed
using mean of daily differences (MODD), defined as the arithmetic
mean of differences between glucose values obtained at the same
time point on two consecutive days [32]. In the analysis of group
differences between diet interventions, each parameter, with the
exception of MODD, was calculated for each day and included as the
mean of both days on each intervention.

2.5. Data analysis and statistics

The reported measures of glycaemia and GV were secondary
analyses of explorative endpoints according to state-of-the-art in
the literature concerning clinical significance and applicability of
CGM data. Data were examined for normality visually and with
Shapiro—Wilk test, after which group differences between diet
interventions were compared using paired sample t-tests or Wil-
coxon signed-rank tests where appropriate. Additionally, analyses
of correlation were performed using Pearson or Spearman corre-
lation where appropriate. Data are presented as mean + SD or
median (25—75 percentile) values unless otherwise specified. A
minimal detectable difference of GV of 22% given a standard devi-
ation of 30% between interventions was calculated to be detected
with n = 16 participants, with power 80% and a significance level of
0.05, the level of p-values used on all parameters to reject the null
hypotheses. All statistical analyses were performed using R Core
Team (2015). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

3. Results
3.1. Glycaemia

Compared with the CD diet, the CRHP diet was found to reduce
(mean + SD) 24-h MSG (7.7 + 1.6 vs 8.6 + 2.0 mmol/L) and PPG levels
(8.5 +1.9vs 10.1 + 2.4 mmol/L and 8.0 + 1.5 vs 9.4 + 2.3 mmol/L, after
breakfast and lunch, respectively), p < 0.001 for all (Table 2). The PPG
excursions were reduced on the CRHP compared with the CD diet,
with excursions differing approximately three- (1.3 + 09 vs
3.4 + 1.6 mmol/L) and two-fold (1.3 + 0.8 vs 2.8 + 1.3 mmol/L) after
breakfast and lunch, respectively, p < 0.001 for both. Total 24-h
maximum glucose values were reduced while consuming the CRHP
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Fig. 1. Glucose profiles of 48-h continuous glucose monitoring. The three lines represent CD diet (dashed, only upper limit of 95% CI displayed), CRHP diet (solid, only lower limit of
95% CI displayed) and the difference between CRHP and CD diet (dotted, with 95% CI). B, breakfast (to, tz4); L, lunch (tgs, tygs); Sn, snack; D, dinner; postprandial phase after

breakfast, to-ts, to4-tzg and postprandial phase after lunch, t4s5-tgs, togs-tszs.
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Table 2
Indices of glycaemia and glycaemic variability by continuous glucose monitoring.
n=16 Diet? Difference” Reduction® (%) p-value
CcD CRHP

Glycaemic Parameters
MSG (mmol/L) 86+20 7.7 +£1.6 0.9 (0.5-1.3) 104 <0.001¢
PPG (mmol/L)

Breakfast 10.1 + 24 85+19 1.6 (1.0-2.2) 15.8 <0.001¢

Lunch 94 +23 80+15 1.4 (0.8—-2.0) 14.9 <0.001¢
PPGE (mmol/L)

Breakfast 34+16 1.3+09 2.1 (1.5-2.8) 62.7 <0.001¢

Lunch 28+13 1.3+08 1.6 (0.8—-2.3) 55.1 <0.001¢
Maximum (mmol/L) 12.6 £ 2.5 10.1 £2.0 2.5(1.9-3.2) 20.2 <0.001¢
Minimum (mmol/L) 5.3 (4.6—-6.5) 5.7 (4.8—-6.7) —0.1(-0.9 t0 0.3) 0.20°
AUC (h x mmol/L)

>10.0 mmol/L 6.4 (0.6—12.3) 0.1 (0.0-0.9) 6.1 (0.5—-11.9) 0.002¢

>7.8 mmol/L 25.4(5.9-47.2) 6.5 (1.9-12.4) 17.5(5.3-25.7) <0.001¢
Time Spent in
Range (3.9—10.0 mmol) 80.4 (62.2—96.7) 97.2 (94.5-100) —13.6 (—24.1to —1.6) 0.003¢
Hyperglycaemia

>10.0 mmol/L 18.0 (3.1-37.8) 0.8 (0.0-5.5) 14.0 (0.8—24.1) 0.003¢

>7.8 mmol/L 51.3 (25.8—91.7) 37.7 (11.4-56.5) 17.4 (6.1-23.3) 0.001¢
Glycaemic Variability
SD (mmol/L) 1.6 £ 05 1.0+ 03 0.7 (0.5-0.9) 43.0 <0.001¢
CV (%) 193 +£55 123 £ 3.8 7.0 (5.2—-8.8) 36.4 <0.001¢
MAGE (mmol/L) 42 +13 23+09 1.9 (1.4-24) 44.6 <0.001¢
CONGA; (mmol/L) 1.5+04 08+03 0.6 (0.5—-0.8) 43.8 <0.001¢
CONGA; (mmol/L) 21+0.7 1.2+04 0.9 (0.7-1.2) 44.4 <0.001¢
CONGA4 mmol/L) 25+08 14+ 05 1.1 (0.8—-1.3) 433 <0.001¢
MAG change (mmol/L/h) 14 +04 09+03 0.6 (0.4—0.7) 393 <0.001¢
MODD (mmol/L) 0.9 (0.7-1.1) 0.6 (0.5-0.8) 0.2 (0.1-0.6) 0.002¢

CD, conventional diabetes; CRHP, carbohydrate-reduced high-protein; MSG, mean sensor glucose; PPG, postprandial glucose; PPGE, postprandial glucose excursion; AUC, area
under the curve; SD, standard deviation; CV, coefficient of variation; MAGE, mean amplitude of glucose excursions; CONGA,, continuous overlapping net glycaemic actions of
n hours apart; MAG change, mean absolute glucose change; MODD, mean of daily differences.

¢ Mean + SD or median (25—75 percentile).

b mean (95% CI) or median (25—75 percentile).
¢ Percentage of difference divided by CD.

d Tested by paired sample t-test.

¢ Tested by Wilcoxon signed-rank test.

compared with the CD diet (101 + 2.0 vs 12.6 + 2.5 mmol/L,
p < 0.001), whereas no significant difference of 24-h minimum
glucose levels (median (IQR)) was observed (5.7 (4.8—6.7) vs 5.3
(4.6—6.5) mmol/L, p = 0.20). AUCs in the hyperglycaemic range
(>10 mmol/L) were reduced (0.1 (0.0—0.9) vs 6.4 (0.6—12.3) h x
mmol/L, p = 0.002) as were those above 7.8 mmol/L (6.5 (1.9—12.4) vs
254 (5.9-47.2) h x mmol/L, p < 0.001) by the CRHP compared with
CD diet. Patients consuming the CRHP diet were more likely to spend
time in range (3.9—10.0 mmol/L) than those consuming the CD diet
(97.2 (94.5—100) vs 80.4 (62.2—96.7)%, p = 0.003), and correspond-
ingly less time in the hyperglycaemic range (0.8 (0.0—5.5) vs 18.0
(31-37.8)%, p = 0.003) and above 7.8 mmol/L (37.7 (11.4—56.5) vs
51.3 (25.8—91.7)%, p = 0.001), CRHP vs CD diet, respectively.

3.2. Glycaemic variability

Intra-day indices of GV were all reduced (mean + SD)
(p < 0.001 for all) on the CRHP compared with the CD diet
(Table 2), including SD (1.0 + 0.3 vs 1.6 + 0.5 mmol/L), CV
(12.3 + 3.8 vs 19.3 + 5.5%), MAGE (2.3 + 0.9 vs 4.2 + 1.3 mmol/L),
CONGA; (0.8 + 0.3 vs 1.5 + 0.4 mmol/L), CONGA; (1.2 + 0.4 vs
2.1 + 0.7 mmol/L), CONGA4 (1.4 + 0.5 vs 2.5 + 0.8 mmol/L) and
MAG change (0.9 + 0.3 vs 1.4 + 0.4 mmol/L/h). In addition, all
indices were uniformly reduced for all 16 patients while
consuming the CRHP diet (Fig. 2). Compared with the CD diet, the
CRHP diet reduced inter-day variability, measured as MODD
(median (IQR)) (0.6 (0.5—0.8) vs 0.9 (0.7—1.1) mmol/L, p = 0.002).
The indices of intra-day GV (disregarding assigned diet) were

shown to correlate strongly with each other (Pearson's
r = 0.84-0.98, p < 0.001 for all) and with MODD (Spearman'’s
p = 0.69—0.83) (Supplementary Table 2).

4. Discussion

In the present study, there was an acute improvement in the
diurnal glucose profiles in subjects with T2D when changed from
the conventional diabetes diet to an iso-energetic carbohydrate-
reduced diet with corresponding increase in proteins and fats.
Diurnal glucose profiles were estimated by the commonly used
measures of glycaemia and indices of both intra- and inter-day
variability. As no single measure yet covers all aspects of dynamic
glucose profiles, a multifaceted approach is needed to analyse
continuous glucose measurements.

If maintained, the improvement in mean glucose of 0.9 mmol/L
with the CRHP diet could lead to a theoretical reduction in HbA; of
~6 mmol/mol [33]. Postprandial glucose excursions have been
shown to strongly predict HbA1. levels in well-controlled T2D pa-
tients [4] and a reduction to contribute independently to reduce the
risk of CVD [34]. The CRHP diet reduced the glucose AUC and the
time spent in hyperglycaemia (>10 mmol/L) and above 7.8 mmol/L,
which is of relevance, as guidelines regarding glycaemic control in
T2D advocate blood glucose below 10 mmol/L [25]. Individuals with
normal glucose tolerance rarely exceed blood glucose levels of
7.8 mmol/L after a meal, but even well-controlled T2D patients do
[35,36].

The SD index during consumption of the CD diet was similar to
that reported by Kohnert et al. [36] in a cross-sectional study of a
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Fig. 2. Individual intra-day GV differences of the 16 participants. SD, standard devia-
tion; CV, coefficient of variation; MAGE, mean amplitude of glucose excursions;
CONGA, continuous overlapping net glycaemic action; MAG change, mean absolute
glucose change.

comparable population with well-controlled T2D (HbA1.<7%),
while SD index was reduced during the CRHP diet. Mori et al. [37]
compared the acute effect of a standard carbohydrate (55-60E%)
with a low-carbohydrate (32E%) liquid diet, both with a protein
content of ~17E%, in tube fed T2D patients under severe caloric
restriction reducing SD 1.1 mmol/L (36.5%) on the low compared
with standard carbohydrate liquid diet. Reducing carbohydrate
content while maintaining protein content seems, under these
conditions, to have a major impact on SD. In another study by Tay
et al. [38] comparing a very low-carbohydrate (LC, 14E%) with a
standard carbohydrate diet (HC, 53E%) in moderately well-
controlled T2D patients, absolute values of SD after 24 weeks of
intervention were 1.1 and 1.5 mmol/L, respectively; a difference
seemingly persisting medium-term [39].

As SD is easy to calculate and well-validated, it is commonly
reported, and is a preferred method for quantifying GV from CGM
data [18,40]. A limitation is that glucose profile data rarely follow a
Gaussian distribution, which is required for the use of SD [41].
Despite this shortcoming, SD remains a fairly robust measure of GV,
as a linear relation between interquartile range and SD has been
established [42], and numerous studies have shown very strong
correlations between SD and commonly used GV measurements
[18]. In the present study (Supplementary Table 2), and in

accordance with the literature [43], SD was found to correlate with
the mean of glucose readings (Pearson's r = 0.46). However, if the
SD is corrected for the mean glucose value, the so-called CV index is
obtained which has been proposed as a primary measure of vari-
ability [44]. In the present study, the CRHP diet resulted in an ab-
solute reduction of CV by 7.0%, a relative decrease of 36.4%.
Importantly, both diets resulted in stable glucose levels classified as
CV<36% [44], which in part could be explained by the participants
only being treated with metformin.

The magnitude of estimates in the present study for MAGE while
consuming the CD diet was similar to that found in a study by Kohnert
et al. [36]. The study conducted by Mori et al. [37] showed an absolute
reduction of 2.5 mmol/L (32.5% relative reduction) of MAGE between
diets in favour of the low-carbohydrate diet, while the absolute values
of MAGE found by Tay et al. [38] (LC 2.9 and HC 3.9 mmol/L) differed
by 1.0 mmol/L. For quantification of glucose oscillations, MAGE has
proven applicable to analyse intermittent and continuous glycaemic
data [28] and has been proposed as the ‘gold standard’ metric for
measuring GV [45]. Service et al. [27] proposed the MAGE index to
only include excursions larger than 1.0 SD of the diurnal glucose
measurements to disregard minor excursions present in healthy in-
dividuals. The MAGE index has been criticised due to operator de-
pendency [18] and ambiguity regarding the arbitrary definitions of
peaks and nadirs [42]. As the original method was found to be an
unreliable measure of GV [22], an automated algorithm applicable to
interstitial CGM systems has been recommended [28,46].

All three indices of CONGA, were reduced comparably during
CRHP diet, regardless of the duration of time frame (n hours),
with almost identical (43.3—44.4%) relative reductions in our
study. The absolute values of CONGA, on either diet increased
with increasing n, which is a tendency described previously by
Rodbard [18], with absolute differences amounting to 0.6, 0.9
and 1.1 mmol/L, respectively, for CONGA;, CONGA; and CONGA,.
Tay et al. [38] found a carbohydrate-reduced diet to have com-
parable influence on CONGA; and CONGA4 as found in the pre-
sent study, which persisted after two years of follow-up [39].
McDonnell et al. [30] introduced the CONGA, as a mathemati-
cally consistent and objective expression of GV from continuous
glucose tracings while taking all variability into account. How-
ever, this index has been criticized due to the failure in
discriminating pathological excursions from excursions that
might be considered as noise [41].

MAG change on both diet interventions in our study was smaller
than previously reported [31], particularly on the CRHP diet. The
importance of MAG change in T2D is largely unknown, although
recently, an important point regarding its use in T2D was made. In a
reanalysis of the HEART2D study, MAG change decreased signifi-
cantly, whereas reductions of SD and MAGE were not statistically
significant [40]. MAG change was calculated from seven-point
glucose profiles, correlating with CGM measurements [31].
Notably, MAG change reflects kinetics of glycaemic change per unit
of time rather than representing a true assessment of the magni-
tude of glucose excursions [31,47].

We show here that inter-day GV is very much affected by the
intervention diet, with MODD values comparable to and below
those seen in healthy individuals while consuming the CD and
CRHP diet, respectively [30]. MODD has previously been reported to
be much higher in patients with T2D [48]. MODD is, however,
influenced by differences in meal timing and physical activity,
making comparisons between studies with different designs diffi-
cult [40]. MODD results should, therefore, be interpreted with
caution and generally require detailed information about lifestyle
[30]. Improving MODD may be useful, as MODD has been associ-
ated with oxidative stress and diabetic neuropathy, independently
of HbA1, in patients with T2D [49,50].
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A strength of the current study is the standardization of inter-
vention periods, as patients remained sedentary and ingested most
of the assigned daily meals under supervision at breakfast and lunch,
though dietary compliance at home could not be verified. Due to the
small day-to-day variability, each parameter could be computed
reliably for both consecutive study days on each diet. Furthermore,
the analysis included a complete set of data from all patients and
comprised of state-of-the-art clinically relevant markers of glycae-
mia and variability derived from CGM data. To minimize inaccuracies
resulting from the CGM measurements [41], frequent calibrations
were performed in accordance with the manufacturer’s instructions.
CGM systems have proven unreliable at extreme values (outside
2.2—22.2 mmol/L) [23], but this was of little concern in the present
study population of well-controlled T2D patients on metformin
monotherapy. The size and homogeneity of the population in the
present study (the majority being male with good glycaemic control)
limits the generalizability of the present findings to larger, more
heterogeneous populations with T2D.

In conclusion, moderately reduced intake of carbohydrates with
concomitant iso-energetic increased intake of protein and fat
acutely improved glycaemic control and reduced GV in T2D pa-
tients treated with diet and metformin. The improvements were
evident in all subjects for all indices of intra-day GV and also inter-
day GV was normalized.
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